Small Pond Identification in the Highland Lakes Watershed Using Satellite Imagery

> LCRA Board of Directors Meeting June 18, 2024



# Why do we need to study ponds in the watershed?

- To understand the impact to the inflows of system
- To help determine if there is any impact to the firm yield of the system

### History of Small Pond Identification Studies

- 2011 Texas Water Development Board
  - Studied the impact of exempt reservoirs on two reservoirs
  - Lake Coleman and Cedar Creek Reservoir

#### 2017 and 2019 – Texas Water Development Board

• Used the National Hydrography Dataset, U.S. Geological Survey topo maps, ArcGIS aerial images and Google Earth images in the San Saba watershed

#### • 2023 – LCRA

- Staff used GIS techniques to estimate the number of ponds that appear to have been constructed in eight separate watersheds
- Added the small ponds into LCRA models to determine the potential effects to the firm yield

#### • 2024 – LCRA

• Used remote sensing to identify ponds within the watersheds

### Staffing

Dr. Jennifer Jensen, Texas State University Garrett Pugh, Texas State University Grayson Wylie, Texas State University Ron Anderson, LCRA Chief Engineer Hank Zook, LCRA Cartographer



#### GEOGRAPHY AND ENVIRONMENTAL STUDIES



### **Regulation of Small Ponds**

Exempt from state water rights permitting if:

- Located entirely on private property (on a non-navigable stream or off channel)
- Store no more than an average annual amount of 200 acre-feet of water
- The pond is used solely for:
  - Domestic and livestock purposes
  - Certain types of wildlife management

### Regulation of Small Ponds (Continued)

Exempt from state water rights permitting if:

- No commercial operations
  - No industrial operations, aquaculture, fish farming, housing developments
  - May allow hunting, trapping for a fee, certain other incidental uses
- No limit on the number of ponds a landowner can have
- Exempt ponds are not included in the Texas Commission on Environmental Quality's Water Availability Models

### **Examples of Small Ponds**

#### Ponds near Brown Creek in the Pecan Bayou watershed



### Examples of Small Ponds (Continued)

Hamilton Creek, Burnet



### **Area of LCRA Study**

#### Watersheds



#### Watershed Area (square miles)

| Pecan Bayou                   |        | 2,205 |
|-------------------------------|--------|-------|
| San Saba River                |        | 2,296 |
| Brady Creek                   |        | 804   |
| Main Stem/Other               |        | 2,545 |
| Lake Buchanan Watershed Total | 7,850  |       |
| Llano River                   |        | 4,466 |
| Pedernales River              |        | 1,281 |
| Main Stem/Sandy Creek/Other   |        | 1,083 |
| Lake Travis Watershed Total   | 6,830  |       |
| Total Watershed Area          | 14,680 |       |

### **Overall Project Objectives**

Ponds in the Highland Lakes watershed for 2015, 2019 and 2023

#### Assess

Perform quality control review of methods and found ponds



#### Inventory

Inventory ponds within subwatersheds and summarize water body distributions by size per year

#### Compare

Compare results of classified inventory with the United States Geological Survey database





#### **Quantify and summarize**

Compute inventory change statistics

### Results







### Highland Lakes Subwatersheds Pond Count



**Subwatershed** 

### Highland Lakes Subwatersheds Pond Density



Subwatershed

### Highland Lakes Watershed Pond Area and Counts (December 2015-March 2023)



### **Pond Counts\***

| Subwatershed    | December<br>2015 | February<br>2019 | May 2023 |
|-----------------|------------------|------------------|----------|
| Colorado Main 1 | 8,387            | 8,480            | 9,198    |
| Colorado Main 2 | 2,322            | 2,766            | 2,837    |
| Colorado Main 3 | 1,418            | 2,084            | 2,766    |
| Llano           | 4,481            | 5,005            | 5,752    |
| Pecan Bayou     | 13,402           | 12,761           | 13,575   |
| Pedernales      | 4,181            | 4,022            | 4,927    |
| San Saba        | 3,265            | 3,800            | 3,943    |
| Sandy Creek     | 860              | 839              | 948      |
| Total           | 38,316           | 39,757           | 43,946   |
| Increase        |                  | 1,441            | 4,189    |
| % Increase      |                  | 3.8%             | 11%      |

- 5,630 new ponds were added from 2015 to 2023
- Pond construction increased in the 2019-2023 four-year period compared with the 2015-2019 four-year period
- Pecan Bayou has the greatest
  number of ponds
- Sandy Creek has the fewest ponds

\*For all ponds greater than 1,076 feet<sup>2</sup> (100 m<sup>2</sup>)

### San Saba Pond Inventory



### Sandy Creek Pond Inventory



## **Annualized Percent Increase in Number of Ponds\***

| Subwatershed    | Percent of Watershed | December 2015-<br>February 2019 | February 2019-<br>May 2023 | December 2015-<br>May 2023 |
|-----------------|----------------------|---------------------------------|----------------------------|----------------------------|
| Colorado Main 1 | 11%                  | 0.35%                           | 2.01%                      | 1.28%                      |
| Colorado Main 2 | 6%                   | 5.68%                           | 0.62%                      | 2.80%                      |
| Colorado Main 3 | 5%                   | 12.93%                          | 7.18%                      | 9.65%                      |
| Llano           | 30%                  | 3.55%                           | 3.47%                      | 3.50%                      |
| Pecan Bayou     | 15%                  | -1.54%                          | 1.53%                      | 0.18%                      |
| Pedernales      | 9%                   | -1.22%                          | 5.10%                      | 2.29%                      |
| San Saba        | 21%                  | 4.91%                           | 0.91%                      | 2.64%                      |
| Sandy Creek     | 3%                   | -0.78%                          | 3.04%                      | 1.35%                      |

\*For all ponds greater than 1,076 feet<sup>2</sup> (100 m<sup>2</sup>)

### **Study Summary**

- Ponds are increasing in number and density, varies by watershed
- The approach:
  - Provides a high level of accuracy and confidence in the results
  - Identified discrepancies with USGS database
  - Can be used to track changes over time, including future years

### **Firm Yield Impacts**

#### • Assumptions made:

- Assumed a maximum water depth of 10 feet for each pond
- Each upstream pond fully fills and spills to the next pond
- All the water in the ponds would eventually make it to the river as inflows
- Each pond is storing state water (not groundwater)
- Results from the analysis indicate that the pond's water surface area and the watershed area translate to the reduction of inflows during the critical period
- Modeled impacts to firm yield

